A stepwise loading method to magnetically responsive Pt-Fe3O4/MCNT catalysts for selective hydrogenation of 3-methylcrotonaldehyde
نویسندگان
چکیده
Pt-loaded multi-walled carbon nanotubes (Pt/MCNTs) and magnetically responsive Pt-Fe3O4/MCNT catalysts were prepared by a stepwise loading of preformed Pt and Fe3O4 nanoparticles onto multi-walled carbon nanotubes (MCNTs). The structure, composition, and magnetism of the catalysts were characterized by X-ray diffraction (XRD), TEM, H2-O2 titration, inductively coupling plasma-atomic emission spectroscopy (ICP-AES), and superconducting quantum interference device (SQUID) techniques. Ascribed to the well-controlled particle size in the preformed Pt colloids, Pt particles in the consequent Pt/MCNT and Pt-Fe3O4/MCNT catalysts are of high uniformity and dispersion. The prepared Pt catalysts show an excellent catalytic performance in the liquid phase hydrogenation of 3-methylcrotonaldehyde, one of typical α,β-unsaturated aldehydes. A very high selectivity to 3-methylcrotonalcohol of 98% at a conversion of about 80% was available on the magnetic Pt-Fe3O4/MCNT catalyst. The magnetic catalyst, with good superparamagnetism, can be easily recovered from the liquid phase system under the external magnetic field. Moreover, both the Pt/MCNT and magnetic Pt-Fe3O4/MCNT catalysts show a good recyclability, confirmed by five cycles of reusage.
منابع مشابه
Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water
Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally con...
متن کاملThe effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts
The effect of impregnation sequence on the formation of Pt/Ni bimetallic nanoparticles supported on g-Al2O3 was investigated for catalysts with Pt/Ni atomic ratios of 3/1 and 1/1. These bimetallic catalysts were prepared with a fixed Pt loading (5 wt.%) by incipient impregnation of one metal precursor and calcination, followed by the impregnation of the second metal precursor and a second calci...
متن کاملIn-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts
In-situ liquid-phase hydrogenation of m-chloronitrobenzene (m-CNB) based on aqueous-phase reforming (APR) of ethanol and catalytic hydrogenation was carried out over Fe-modified Pt/carbon nanotubes (CNTs) catalysts. The effects of Pt loading over CNTs and Fe modification on the catalytic performance of Pt/CNTs catalysts were studied. In-tube loading of Pt particles, compared with out-tube loadi...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملEffect of textural properties of Ni (Nano)-supported catalysts on the selective benzene hydrogenation in the vapor phase
Ni catalysts supported on Nano porous catalysts were prepared by the impregnation method and tested for vapor phase hydrogenation of benzene. The textural and physico-chemical properties of Ni catalysts were characterized by the X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope and N2 adsorption-desorption analysis. The catalytic evaluation reve...
متن کامل